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Topology and computational performance of attractor neural networks
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~Received 1 August 2003; published 10 October 2003!

To explore the relation between network structure and function, we studied the computational performance
of Hopfield-type attractor neural nets with regular lattice, random, small-world, and scale-free topologies. The
random configuration is the most efficient for storage and retrieval of patterns by the network as a whole.
However, in the scale-free case retrieval errors are not distributed uniformly among the nodes. The portion of
a pattern encoded by the subset of highly connected nodes is more robust and efficiently recognized than the
rest of the pattern. The scale-free network thus achieves a very strong partial recognition. The implications of
these findings for brain function and social dynamics are suggestive.
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While intense research activity is centered on structu
and topological properties of social, biological and techn
logical networks@1#, the consequences of network structu
for the dynamics of cooperative processes have been
dressed to a lesser extent. Topology is known to affect
ordering and disordering of the Ising model@2–4# and the
synchronization of coupled oscillators@5,6#. Another area of
burning interest is the relation between structure and fu
tion in the organization of brains.@7–9#

The goal of this report is to study the effect of structure
the dynamics of sparsely connected Hopfield-type@11–13#
attractor neural networks. It is known that randomly pruni
the connections of a Hopfield net~HN! increases the storag
capacity per synapse@14#. Amongst other questions we as
whether there is an optimal topology, given a fixed num
of nodes and connections. The HN is of interest becaus
provides a tractable toy model of collective computation a
can also be viewed as an extension of the Ising model w
limited amounts of frustration and quenched disorder@15#.
We hope therefore that our results lead to further insig
into collective computation as well as ordering and disord
ing processes occurring on networks.

Our computations involve Hopfield nets with asynchr
nous updating in random order@11,12#, p random stored bi-
nary pattern vectorsjm, and Hebbian @16# connection
strengths

wi j 5ai j (
m51

p

j i
mj j

m , ~1!

whereai j is the adjacency matrix (ai j 51 if i and j are con-
nected, ai j 50 otherwise!. The degree of nodei is ki

5( j 51
N ai j . We always compare networks with the sam

number of nodesN55000 and average degree^k&550,
varying only the arrangement of connections. Each nod
connected on average to 1% of the other nodes compare
'0.1% in the mouse cortex@7#. The networks compared ar
~1! a regular one-dimensional ring of nodes each conne
to its 50 nearest neighbors,~2! a random~Erdös-Renyi@17#!
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network, ~3! a small-world ~Watts-Strogatz@10#! net con-
structed from a regular lattice by randomly rewiring loc
links with probability r, and ~4! a scale-free network with
degree distributionP(k);k23 with a lower cutoff of 25 gen-
erated by the Barabasi-Albert algorithm of preferential
tachment@18#.

We measured two aspects of the performance of the a
ciative memory networks: thestability of the memorized pat-
terns ~inversely related to the number of errors induced
crosstalk! and the nework’sability to recognizeone of the
patterns from a state with a certain number of errors. Th
two features of an associative memory are related but
identical: a pattern can be stable but nonetheless have a s
basin of attraction, while on the other hand it is possible
an attractor to have a large basin but nonetheless be im
fectly correlated with the memorized pattern. To quant
overall pattern retrieval we used the overlap order parame

mm[
1

N (
i 51

N

xij i
m , ~2!

wherexi561 denotes the output of thei th node. To track
the performance of particular subsets, we used partial o
lapsmm(kmin)5mm(k.kmin), defined as in Eq.~2! except that
the sum runs only over those nodes whose degree exc
kmin and is normalized appropriately.kmin partitions the net-
work into hubs and nonhubs, andmm(kmin) measures recog
nition of the portion of the pattern encoded in the hubs. T
stability of the memory patterns was measured by initializ
the network to a memory state (xi5j i

m) and measuring
mf inal

m after the dynamics had converged. The departure
mf inal

m from Eq. ~1! reflects the number of errors induced b
crosstalk. As an indicator of the network’s ability to retriev
a pattern from a randomly corrupted version, we measu
mf inal

m when the initial overlap wasminit
m 50.5. We averaged

these quantities over several realizations of the topology
patterns, varying the number of patternsp to see how the
performance degrades with increasing loading.

With ^k&550 and p&50, the networks studied are fa
from the commonly studied limit where bothp andN simul-
taneously approach infinity@11#. Therefore no discontinuou
overloading phase transition is apparent, but comparisons
©2003 The American Physical Society02-1
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FIG. 1. Performance of different networks a
a function of the number of patternsp and load-
ing ratio p/^k&. All have ^k&550 andN55000.
Solid lines: random net and small-world net ran
ing from r 50 ~i.e., a locally connected, regula
lattice! to r 50.4. Dotted line: scale-free net~see
also Fig. 2!. Data were averaged over pattern
and network realizations for a total of 80 tria
per point.~a! mf inal whenminit51, a measure of
the stability of the memorized patterns again
crosstalk-induced errors.~b! mf inal when minit

50.5, a measure of how successfully a pattern
retrieved from a corrupted version.
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still possible at finitep andN. Figure 1 shows results for th
networks as a whole. The most rapid degradation in b
stability and retrievability occurs in the regular latticer
50), and the slowest in the random (r 51) net. Not surpris-
ingly, the addition of shortcuts to a regular lattice enhan
pattern stability and retrieval. The performance of sma
world nets is intermediate between that of a regular an
random net. The variation with rewiring probabilityr is not
linear, however. A network withr 50.4 behaves almost as
random net.

The performance of the scale-free net as a whole degr
slightly faster than that of the random net. However, if o
04710
th

s
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examines the partial overlapsmm(kmin) of highly connected
subsets, one finds that the errors are not distributed ev
among nodes. This is evident in Fig. 2, which sho
mm(kmin ,p) for kmin550, 100, 200, and 400. These represe
subsets having an average size of 1235, 333, 97, and
nodes, respectively. The frequency of crosstalk-induced
rors decreases with increasing degree. For example,
nodes withk.kmin5200 have very few errors even whe
p5^k&550. The nodes withk.200 form a subset of ap
proximately 100 nodes. A network of 100 nodesalonewould
be able to store only'14 patterns, even if they were fully
connected@11,19#. Thus, even though the less connect
k
t-
FIG. 2. Performance of the whole networ
compared to ‘‘hub’’ subsets of the scale-free ne
work, averaged over 200 trials per data point.~a!
Pattern stability (minit51). ~b! Pattern retriev-
ability (minit50.5).
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nodes are more prone to errors, their presence is noneth
necessary to assist the hubs in retaining the patterns.
enhanced performance of the well-connected subset m
fests itself not only in the stability of the patterns but also
their retrieval, as seen in Fig. 2~b!. The hubs are able to
distinguish clearly among a large number of patterns eve
the pattern reconstruction is incomplete~i.e., limited to the
hubs!.

The lower rate of errors among the hubs is not surpris
in view of the fact that their input comes from a larger nu
ber of nodes. It can be shown using arguments as in R
@11# and@12# that if the state of the network is initially set t
one of the patterns (x5jm) then an individual node with
degreeki experiences a crosstalk-induced noise-to-signal
tio (N/S) i'A(p21)/ki . Hence the probability of a
crosstalk-induced error in thei th node decreases with in
creasing degree. The presence of one error reduces
strength of the signal and may increase the likelihood
additional errors, resulting in a cascade of the type resp
sible for the abrupt overloading phase transition that occ
in the fully connected Hopfield network@11,19#. Cascades in
the opposite direction may also play a role in the reconstr
tion of patterns from noisy input. The differences betwe
differently connected networks thus lie not just in the init
signal-to-noise ratio but in the dynamics of the spread
error cascades. This dynamics differs from ordinary perco
tion or epidemic propagation, since the susceptibility o
node is inversely correlated with its degree. In most mod
of epidemic propagation only one infected neighbor suffi
to infect a node, regardless of its degree.

Our results are reminiscent of those for the simple Is
model: a one-dimensional lattice is easily disordered by th
od
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mal noise@20#, while even a few long range connections c
restore order at a finite temperature@2#. Furthermore in a
scale-free network the nodes with high degree are m
strongly magnetized than those with low degree@3#. The
difference is that in the present case, the disorder is indu
by interference among the stored patterns and not by stoc
tic noise. It is a quenched rather than thermal disorder.

While we found that the most efficient arrangement
storage and retrieval of patterns by the network as a who
the random network, connections in real brains do not app
to be fully random. One reason may lie in the economy
wiring length @8#. The majority of connections in brains o
higher animals as well as inC. elegans@10# appears to occur
between nearby neurons, while fewer paths connect m
distant regions, suggesting a small-world topology. Our
sults imply that small-world networks with a moderate nu
ber of shortcuts can be almost as computationally efficien
a random network while saving considerably on wiring cos
The suitability of small-world networks for complex compu
tations was also suggested on the basis of other models@9#.
To what extent scale-free structures play a role in real bra
remains to be seen, but our results suggest a mechanis
which information can be centralized in the more connec
nodes while the remaining nodes, although noisy, are no
theless indispensable for the computation. It will be of int
est to study the implications of these notions for the form
tion of knowledge, opinions, and power structures
scientific and social networks@21#.
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